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Central nervous system tumors are a major cause 
of morbidity and death, with ~ 18,000 new cases 
of primary intracranial tumors diagnosed each year 

in the US. This represents ~ 2% of all tumors found in 
adults in this country. More than half of these are HGGs. 
These lesions are extremely aggressive and the vast ma-
jority of patients invariably have tumor recurrence, with 
the median survival time ranging from 1 to 3 years after 
initial diagnosis. Despite facing a better prognosis when 
compared with higher-grade glial tumors, 50–75% of 
patients harboring LGGs eventually die of their disease. 
Median survival times have been reported to range be-
tween 5 and 10 years, and estimates of 10-year survival 
rates range from 5 to 50%.

Although a primary tenet of neurosurgical oncology 
is that survival can improve with greater tumor resection, 
this principle must be tempered by the potential for func-
tional loss following a radical removal. Current neurosur-
gical innovations aim to improve our anatomical, physi-
ological, and functional understanding of the surgical 
region of interest to prevent potential neurological mor-
bidity during resection. Emerging imaging technologies, 
as well as state-of-the-art intraoperative techniques, can 
facilitate a greater extent of resection while minimizing 

the associated morbidity profile. Specifically, the value 
of mapping motor and language pathways is well estab-
lished for the safe resection of intrinsic tumors.

Interestingly, controversy persists regarding prog-
nostic factors and treatment options for both low- and 
high-grade hemispheric gliomas. Among the various tu-
mor- and treatment-related parameters—including tumor 
volume, neurological status, timing of surgical interven-
tion, and the use of adjuvant therapy—patient age and 
tumor histological characteristics have been identified as 
primary predictors of patient prognosis. However, loca-
tion of the tumor in an eloquent area (Fig. 1) has recently 
emerged as another critical factor affecting outcome, 
particularly as it relates to tumor extent of resection.10 
Importantly, despite significant advances in operative 
technique and preoperative planning, the effect of glioma 
extent of resection in prolonging tumor-free progression 
and/or survival remains unclear. Although the value of 
glioma resection in obtaining tissue diagnosis and de-
compressing mass effect are unquestionable, a lack of 
Class I evidence prevents similar certainty in assessing 
the influence of extent of resection. Even though LGGs 
and HGGs are distinct in their biological features, clini-
cal behaviors, and outcomes, understanding the effect of 
surgery remains equally important for both. This is also 
true for lesions in areas of eloquence, where the proximity 
of critical pathways, often related to language and motor 
function, can present a significant challenge to standard 
operative strategies.
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Abbreviations used in this paper: CS = cortical stimulation; DT = 
diffusion tensor; fMR = functional MR; HGG = high-grade glioma; 
LGG = low-grade glioma.



N. Sanai and M. S. Berger

2                                                                                                                      Neurosurg Focus / Volume 28 / February 2010

Evolution of Cortical Mapping Strategies
Direct CS has been used in neurosurgery since 

1930, first by Foerster,26 and then later by Penfield and 
colleagues.72–74 In recent years, the technique of intraop-
erative CS has been adopted for the identification and 
preservation of language function and motor pathways. 
Stimulation depolarizes a very focal area of cortex, which 
in turn evokes certain responses. Although the mecha-
nism of stimulation effects on language are poorly under-
stood, the principle is based on the depolarization of lo-
cal neurons and also of passing pathways, inducing local 
excitation or inhibition, as well as possible diffusion to 
more distant areas by way of orthodromic or antidromic 
propagation.85 Studies in which optical imaging of bipolar 
CS was used in monkey and human cortex have shown 
precise local changes, within 2–3 mm, after the activation 
of cortical tissue.30,31 With the advent of the bipolar probe, 

avoidance of local diffusion and more precise mapping 
have been enabled with an accuracy estimated to be ~ 5 
mm.30

Language mapping techniques were historically de-
veloped in the context of epilepsy surgery, in which large 
craniotomies exposed the brain well beyond the region of 
surgical interest to localize multiple cortical regions con-
taining stimulation-induced language and motor function 
(that is, “positive” sites) prior to resection. Until recently, 
it has been thought that such positive site controls must 
be established during language mapping before any other 
cortical area could be safely resected. Using this tactic, 
awake craniotomies traditionally identify positive lan-
guage sites in 95–100% of the operative exposures. Brain 
tumor surgery, however, is now evolving toward a dif-
ferent standard of language mapping, in which smaller, 
tailored craniotomies often expose no positive sites, and 
tumor resection is therefore directed by the localization 
of cortical regions that when tested contained no stimu-
lation-induced language or motor function (that is, “nega-
tive” sites). This “negative mapping” strategy represents a 
paradigm shift in language mapping technique by elimi-
nating the neurosurgeon’s reliance on the positive site 
control in the operative exposure, thereby allowing for 
minimal cortical exposure overlying the tumor, less ex-
tensive intraoperative mapping, and a more time-efficient 
neurosurgical procedure.

Variability in Cortical Language Localization
Prediction of cortical language sites based on classic 

anatomical criteria is inadequate in light of the signifi-
cant individual variability of cortical organization,35,64,66,70 
the distortion of cerebral topography from tumor mass 
effect, and the possibility of functional reorganization 
through plasticity mechanisms.71,95,121 A consistent finding 
of language stimulation studies has been the identifica-
tion of significant individual variability among patients.64 
Speech arrest is variably located and can go well beyond 
the classic anatomical boundaries of the Broca area for 
motor speech. It typically involves an area contiguous 
with the face-motor cortex, and yet in some cases is seen 
several centimeters from the sylvian fissure. This vari-
ability has also been suggested by studies designed to 
predict the location of speech arrest preoperatively, based 
on the type of frontal opercular anatomy83 or by using 
functional neuroimaging.15,43,94,105,111–113 Similarly, for tem-
poral lobe language sites, one study of temporal lobe re-
sections assisted by subdural grids demonstrated that the 
distance from the temporal pole to the area of language 
function varied from 3 to 9 cm.14 Functional imaging 
studies have also corroborated such variability.25 Further-
more, because functional tissue can be located within the 
tumor nidus,102 the standard surgical principle of debulk-
ing tumor from within to avoid neurological deficits is 
not always safe. Consequently, the use of intraoperative 
cortical and subcortical stimulation to detect functional 
regions and pathways accurately is essential for safely 
removing dominant-hemisphere gliomas to the greatest 
extent possible.

Fig. 1. Illustration of eloquent cortical and subcortical sites in the 
supratentorial compartment. (Reprinted by permission. Originally pub-
lished in Chang et al.: Preoperative prognostic classification system for 
hemispheric low-grade gliomas in adults. J Neurosurg 109:817–824, 
2008.)
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Preservation of Functional Pathways by Using 
Intraoperative Stimulation Mapping

Intraoperative CS has yielded critical data regard-
ing essential language sites, which seem to be organized 
in discrete mosaics that occupy a much smaller area of 
cortex than described by traditional language maps.65,67,69 
Interestingly, the majority of these language sites are 
surrounded by cortex that, when stimulated, produce no 
language errors.68 In the temporal lobe, identification of 
speech areas within the superior and middle temporal 
gyri has been documented within 3 cm of the temporal 
lobe tip.64 In this region, the distance of the resection mar-
gin from the nearest language site is the most important 
variable in predicting the improvement of preoperative 
language deficits. Accordingly, if the distance to the re-
section margin from the nearest language site is > 1 cm, 
significantly fewer permanent language deficits occur.29 
Strict adherence to this principle when operating in any 
region of the dominant hemisphere can substantially re-
duce the risk of inadvertently resecting functional tissue.

The Role of Functional Imaging  
for Eloquent Tissue Localization

Because the need to preserve cortical language func-
tion must be balanced with the goal of maximal tumor re-
section, intraoperative language mapping is advocated by 
some as the rule, rather than the exception.108 The greatest 
risk of tumor recurrence is located within 2 cm of the 
contrast-enhancing rim on imaging studies,37,117 support-
ing the concept that the resection should ideally go beyond 
the gross tumor margin apparent on preoperative imaging. 
However, because of the infiltrating nature of gliomas, it 
is more than likely that a portion of the mass will occupy, 
or be continuous with, functional tissue. Again, this em-
phasizes the need for CS mapping to avoid injuring these 
critical areas, particularly language pathways. Although 
it was classically thought that patients who were neuro-
logically intact or minimally affected preoperatively had 
their functional pathways either displaced or obliterated 
by infiltrative tumors, we now know that normally func-
tioning language, motor, or sensory tissue can blend with 
tumor.102 Therefore, it is not only patients with tumors 
located within the frontal operculum who benefit from 
intraoperative language mapping, but also those with le-
sions in proximity to this region, because there is signifi-
cant variability in this region’s anatomical and functional 
organization.23,83

Functional imaging has advanced considerably in 
both technology and availability, raising the question of 
whether it may supplant intraoperative CS mapping. De-
vices such as fMR imaging, PET, and magnetoencepha-
lography units may aid in the preoperative planning of 
the resection strategy, but these techniques remain too 
imprecise for complex functions such as language map-
ping: their sensitivity (PET, 75%; fMR imaging, 81%) and 
specificity (PET, 81%; fMR imaging, 53%) are subopti-
mal.25,34 These modalities highlight language-associated 
areas of indeterminate significance,7 and they do not offer 
real-time information intraoperatively. To this end, MR 

neuronavigational techniques not only facilitate greater 
resection, but embedding of DT imaging–based tractog-
raphy can prevent inadvertent resection of adjacent sub-
cortical pathways.107,120 In a recent study of 238 patients 
with glioma who were randomized to DT imaging–based 
imaging versus traditional MR neuronavigation with 
DT imaging, postoperative motor deterioration occurred 
in 32.8% of control cases, whereas it occurred in only 
15.3% of the study cases. Although the use of DT imag-
ing–based tractography has not been shown to impact pa-
tient survival directly, the literature highlights the utility 
of this technology in maximizing tumor resection while 
minimizing morbidity. Nevertheless, for the identification 
of functional language pathways and guidance of safe 
tumor removal, these diagnostic imaging tools are still 
only supplements, not substitutes, for direct intraopera-
tive stimulation mapping.

Current Intraoperative Language  
and Motor Mapping Techniques

In general, a limited craniotomy should expose the 
tumor and up to 2 cm of surrounding brain. Using bipo-
lar electrodes, cortical mapping is started at a low stimu-
lus (1.5 mA) and increased to a maximum of 6 mA, if 
necessary. A constant-current generator delivers biphasic 
square wave pulses (each phase, 1.25 msec) in 4-second 
trains at 60 Hz across 1-mm bipolar electrodes separated 
by 5 mm. Stimulation sites (~ 10–20 per patient) can be 
marked with sterile numbered tickets. Throughout motor 
and language mapping, continuous electrocorticography 
should be used to monitor afterdischarge potentials, and 
therefore eliminate the chance that speech or naming er-
rors are caused by subclinical seizure activity.

Awake CS and Impact of Language Mapping
Speech arrest is based on blocking number count-

ing without simultaneous motor response in the mouth 
or pharynx. Dysarthria can be distinguished from speech 
arrest by the absence of perceived or visible involuntary 
muscle contraction affecting speech. For naming or 
reading sites, CS is applied for 3 seconds at sequential 
cortical sites during a slide presentation of line drawings 
or words, respectively. All tested language sites should 
be repeatedly stimulated at least 3 times. A positive es-
sential site can be defined as an inability to name objects 
or read words in 66% or more of the testing per site. In 
all cases, a 1-cm margin of tissue should be measured 
and preserved around each positive language site to pro-
tect functional tissue from the resection.49 The extent of 
resection is directed by targeting contrast-enhancing re-
gions for high-grade lesions and T2-hyperintense areas 
for low-grade lesions. Some groups advocate the use of 
language mapping along subcortical white matter path-
ways as well.19,21

Despite the considerable evidence supporting the 
use of intraoperative CS mapping of language function, 
the efficacy of this technique in preserving functional 
outcome following aggressive glioma resection remains 
poorly understood. Nevertheless, it is important to define 
the long-term neurological effects after using this tech-
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nique for large, dominant-hemisphere gliomas to advo-
cate its use accurately.88

Our experience with 250 consecutive patients with 
dominant-hemisphere glioma (WHO Grades II–IV) sug-
gests that functional language outcome following awake 
mapping can be favorable, even in the case of an aggres-
sive resection.89 Overall, 159 of these 250 patients (63.6%) 
had intact speech preoperatively. At 1 week postopera-
tively, 194 (77.6%) remained at their baseline language 
function, whereas 21 (8.4%) worsened and 35 (14.0%) had 
new speech deficits. However, by 6 months, 52 (92.8%) 
of 56 patients with new or worsened language deficits re-
turned to baseline or better, and the remaining 4 (7.1%) 
were left with a permanent deficit. Interestingly, among 
these patients, any additional language deficit incurred as 
a result of the surgery had either improved by 3 months or 
not all (Fig. 1). Thus, using language mapping, only 1.6% 
(4 of 243 survivors) of all glioma patients develop a per-
manent postoperative language deficit. One explanation 
for this favorable postoperative language profile may be 
our strict adherence to the “one-centimeter rule,” first de-
scribed by Haglund et al.,29 which demonstrated that, for 
temporal lobe tumors, a resection margin of 1 cm or more 
from a language site significantly reduces postoperative 
language deficits.

Cortical and Subcortical Motor Mapping Techniques
For patients with gliomas that are located within or 

adjacent to the rolandic cortex, and thus the descending 
motor tracts, stimulation mapping of cortical and sub-
cortical motor pathways enables the surgeon to identify 
these descending motor pathways during tumor removal 

and to achieve an acceptable rate of permanent morbid-
ity in these high-risk functional areas.8,20,47 In a recent 
study, new immediate postoperative motor deficits were 
documented in 59.3% of patients in whom a subcortical 
motor tract was identified intraoperatively and in 10.9% 
of those in whom subcortical tracts were not observed. 
However, permanent deficits were observed in 6.5% and 
3.5%, respectively.8 In another study of subcortical mo-
tor pathways in 294 patients who underwent surgery for 
hemispheric gliomas, 14 patients (4.8%) had a persistent 
motor deficit after 3 months. Interestingly, patients whose 
subcortical pathways were identified intraoperatively 
were more prone to develop an additional transient or per-
manent motor deficit (27.5 vs 13.1%).47 In another study 
with an 87% gross- or subtotal resection rate, the over-
all neurological morbidity was 5% after using cortical 
motor mapping.20 Thus, collectively the recent literature 
suggests that intraoperative cortical and subcortical mo-
tor mapping can safely identify corridors for resection, as 
well as define the limits of tumor resection.

Tailored Craniotomies and the Value of Negative Mapping
In contrast to the classic mapping principles prac-

ticed in epilepsy surgery, where 95–100% of operative 
fields contain a positive language site, a paradigm shift is 
emerging in brain tumor language mapping, where posi-
tive language sites are not always found prior to resection 
(Fig. 2). In our practice, because of our use of tailored cor-
tical exposures, < 58% of patients have essential language 
sites localized within the operative field. Our experience 
suggests that it is safe to use a minimal exposure of the 
tumor and resect based on a negative language map, rather 

Fig. 2. Negative language map indicating the percentage of negative stimulations per square centimeter of the dominant 
cerebral hemisphere. (Reprinted by permission. Adapted with permission from Fig. 2 in Sanai et al.: Functional outcome after 
language mapping for glioma resection. N Engl J Med 358:18–27, 2008. Copyright © 2008, Massachusetts Medical Society. All 
rights reserved.)
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than rely on a wide craniotomy to find positive language 
sites well beyond the lesion. However, language mapping 
techniques such as this are generally more successful and 
safer at high-volume neurosurgical centers.

Negative language mapping, however, does not nec-
essarily guarantee the absence of eloquent sites (Fig. 2). 
Despite negative brain mapping, permanent postopera-
tive neurological deficits have been reported.108 In our 
experience with 250 consecutive patients with dominant-
hemisphere glioma, all 4 of our patients with permanent 
postoperative neurological deficits had no positive sites 
detected prior to their resections. Other cases of unex-
pected postoperative deficits have also been attributed 
to progressive tumor infiltration into functional areas.3 
Furthermore, both intraoperative stimulation and func-
tional imaging techniques have provided evidence for 
redistribution of functional neural networks in cases of 
stroke,11,95,118 congenital malformations,54,56 brain injury,27 
and tumor progression.24,95,121 Not surprisingly, it has been 
hypothesized that brain infiltration by gliomas leads to 
reshaping or local reorganization of functional networks 
as well as neosynaptogenesis.18,109 This would explain the 
frequent lack of clinical deficit despite glioma growth into 
eloquent brain areas,17,24,95 as well as the transient nature 
of many postoperative deficits. In the case of language 
function located in the dominant insula, the brain’s ca-
pacity for compensation of functional loss has also been 
associated with recruitment of the left superior temporal 
gyrus and left putamen.17

Assessing the Value of Glioma Extent of Resection
Microsurgical resection remains a critical therapeu-

tic modality for all gliomas.4,28,45,122 However, there re-
mains no general consensus in the literature regarding 
the efficacy of extent of resection in improving patient 
outcome.32,36,60,78,81,87,92 With the exception of WHO Grade 

I tumors, gliomas are difficult to cure with surgery alone, 
and the majority of patients will experience some form of 
tumor recurrence. Patients with glioblastomas have me-
dian survival rates of 12.2–18.2 months,33 whereas those 
with anaplastic astrocytomas can expect to survive 41 
months, on average.46 Low-grade gliomas carry a better 
prognosis, although the vast majority of patients eventu-
ally die of their disease and 5-year survival percentages 
range from 42 to 92% in the literature.51,52,59,76,84,96,97,123

For all gliomas, the identification of universally ap-
plicable prognostic factors and treatment options remains 
a great challenge. Among the many tumor- and treatment-
related parameters, only patient age and tumor histologi-
cal characteristics have been identified as reliable predic-
tors of patient prognosis, although tumor location in an 
eloquent area and a patient’s functional status can also 
be statistically significant. Surprisingly, despite signifi-
cant advances in brain tumor imaging and intraoperative 
technology during the last 15 years, the effect of glioma 
resection in extending tumor-free progression and patient 
survival remains unknown.

Although LGGs and HGGs are distinct in their bi-
ology, clinical behavior, and outcome, understanding the 
efficacy of surgery remains equally important for each. 
With this in mind, an examination of the modern neuro-
surgical literature (1990 to present) reveals clues as to the 
role of extent of resection in outcome for glioma patients 
(Fig. 3).

Extent of Resection Studies for LGG
In the last 2 decades, mounting evidence in the litera-

ture suggests that a more extensive resection of an LGG 
is associated with a more favorable life expectancy (Fig. 
3). In addition to providing longer overall survival, more 
aggressive resections for LGG can also influence the risk 
of malignant transformation, raising the possibility that a 
surgical intervention can alter the natural history of the 

Fig. 3. Chart showing absolute number of LGG studies in the neurosurgical literature from 1990 to 2009 that statistically 
examined the effect of extent of resection on patient survival.



N. Sanai and M. S. Berger

6                                                                                                                      Neurosurg Focus / Volume 28 / February 2010

disease.87 These associations are evident not only within 
the population with general hemispheric LGGs,9,103 but 
also for those with specific LGGs limited to specific elo-
quent subregions, such as insular LGGs.90,100 An overall 
review of the modern neurosurgical literature reveals 23 
studies2,12,40,42,44,52,55,57,59,61,63,75,76,84,86,90,93,96,98,103,115,119,123 since 
1990 that have applied statistical analysis to examine the 
efficacy of extent of resection in improving survival and 
delaying tumor progression among patients with LGG. 
Six of these studies included volumetric analysis of extent 
of resection.12,44,90,98,103,115 Of the nonvolumetric studies, 14 
demonstrated evidence supporting extent of resection as a 
statistically significant predictor of either 5-year survival 
or 5-year progression-free survival. These studies were 
published between 1990 and 2009, and most commonly 
used a combination of multivariate and univariate analy-
ses to determine statistical significance. Interestingly, of 
the 3 nonvolumetric studies that did not support extent of 
resection as a predictor of patient outcome, none of these 
reports evaluated progression-free survival, but instead 
focused solely on 5-year survival.

Extent of Resection Studies for HGG
Twenty-nine studies1,5,6,13,16,22,38,39,41,45,46,48–50,53,58,62,77,79,80, 

82,91,99,101,104,106,110,114,116 since 1990 have applied statistical 
analysis to examine the efficacy of extent of resection 
in improving survival and delaying tumor progression 
among patients with HGG. Four of these studies included 
volumetric analysis of extent of resection.45,46,49,79 Of the 
nonvolumetric studies, 16 demonstrated evidence support-
ing extent of resection as a statistically significant predic-
tor of either time to tumor progression or overall survival. 
Although some of these reports showed extent of resec-
tion to have a significant effect on both tumor progres-
sion and overall survival, every study showed a survival 
benefit. Ten studies, however, demonstrated no significant 
benefit based on extent of resection. Notably, the distri-
bution of adjuvant chemotherapy and radiation treatment 
was comparable among all extent of resection studies for 
HGG. Echoing the nonvolumetric study results, half of 
all HGG volumetric studies showed a significant survival 
advantage with greater extent of resection.

Conclusions
Intraoperative stimulation for cortical and subcor-

tical mapping is a reliable, robust method to maximize 
resection and minimize morbidity, even when removing 
gliomas within or near adjacent functional pathways. 
Unlike motor function, speech and language are vari-
ably distributed and widely represented, thus emphasiz-
ing the utility of language mapping in this particular pa-
tient population. Gliomas located in eloquent territories 
can displace predicted fiber pathways in unpredictable 
conformations. The combination of advanced imaging 
paradigms, such as neuronavigational DT imaging–based 
tractography, with intraoperative mapping techniques can 
best assure preservation of critical function. Using this 
approach, and in conjunction with standardized neuroan-
esthesia and neuromonitoring, the postoperative motor 
and language resolution profiles following glioma resec-

tion may be predictable. Specifically, in our experience, 
any additional language deficit incurred as a result of the 
surgery will improve by 3 months or not all. Our expe-
rience also emphasizes the value of negative language 
mapping in a patient with a tailored cortical exposure. Al-
though the value of extent of resection remains less clear, 
the available literature for both low-grade and high-grade 
hemispheric gliomas demonstrates mounting evidence 
that a more extensive resection is associated with a more 
favorable life expectancy for patients with both LGG and 
HGG. This objective should be cautiously pursued for all 
gliomas, even those in an eloquent location.
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