# The Lumbar Plexus and the Transpsoas Approach

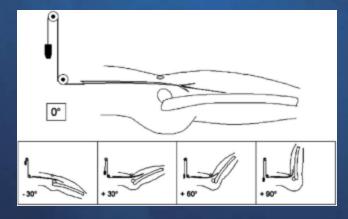
# Anatomic and Neurophysiologic Review

Timothy Davis MD, D.ABNM Physical Medicine and Rehabilitation The Spine Institute, Santa Monica The Spine Center, Cedars Sinai

1 | MDT Confidential




### Focus on Safety


- Not as simple as previously described
- Neural Injury is possible
  - Sensory
  - Motor
- Understand the Anatomy
- Understand the Limitations of Neuromonitoring



2 | MDT Confidential

- Moro et al.-Spine 2003 (2)
  - Anatomic "Safety Zone" L2-5 excluding the GF
  - Muscle should be split more anterior
  - GF higher risk at L3-4

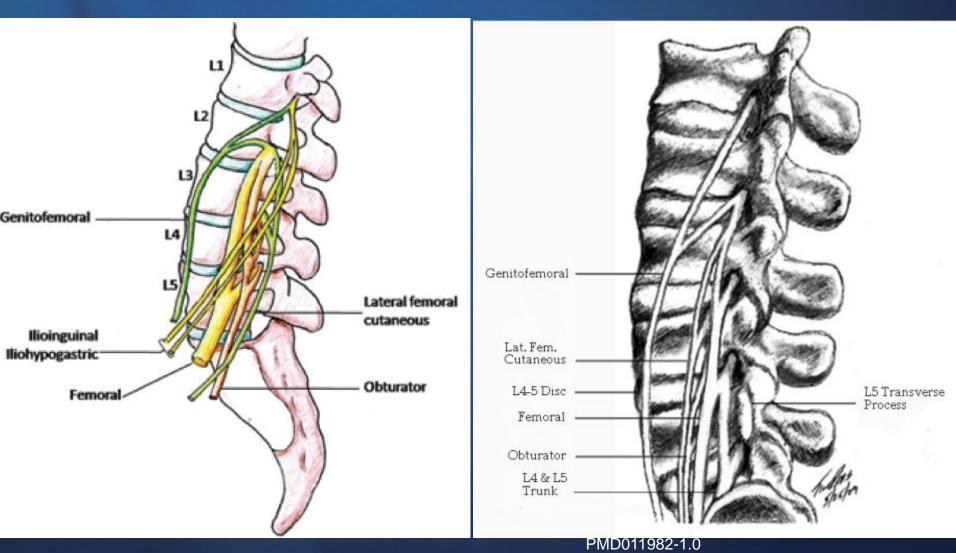






- Lu et al.-Zhonghua Wai Ke Za Zhi 2008 (Chinese) (3)
  - Safety zone decreases from L2-5
  - Incising psoas ventral 2/3 can prevent injury
- Park et al.- J Spinal Disord Tech 2010 (4)
  - Anatomic variations in a small number can place neural structures at risk
  - "Care is particularly warranted at L4-5"




- Twenty lumbar segments L1-4 (5)
  - 5 Cadavars dissected in the lateral position
- Conclusion
  - In regard to Direct Nerve Injury
    - "the safe anatomical zones....L1-4 are at the middle posterior quarter of the VB (midpoint Zone III)"
    - "at the L4-5 disc space is the midpoint of the VB (Zone II-III demarcation)
  - Ilioinguinal, iliohypogastric, lateral femoral cutaneous potential fo injury in the retroperitoneal space



# Lumbar Plexus Illustration

#### **Uribe: Obturator Posterior To Femoral**

#### **Obturator Anterior to Femoral**



- 20 Lumbar Plexus on 18 Cadavars (1)
- Femoral N.
  - Average Diameter 13.1 mm
- Obturator N.
  - At similar risk to Femoral at L4-5
- L5 Transverse process
  - Post boundary against which neural structures can be compressed



### **Neural Symptoms**

- Are neural injuries during the transpsoas more prevalent than reported?
  - Is it relevant?
  - Are they mostly resolving neuropraxia
    - Result of hematoma, stretch, compression?
- Femoral or Obturator palsy are the most potentially disabling
  - Transient Neuropraxia is more likely
    - 3 level cross innervation
    - Multiple muscles functioning in symphony

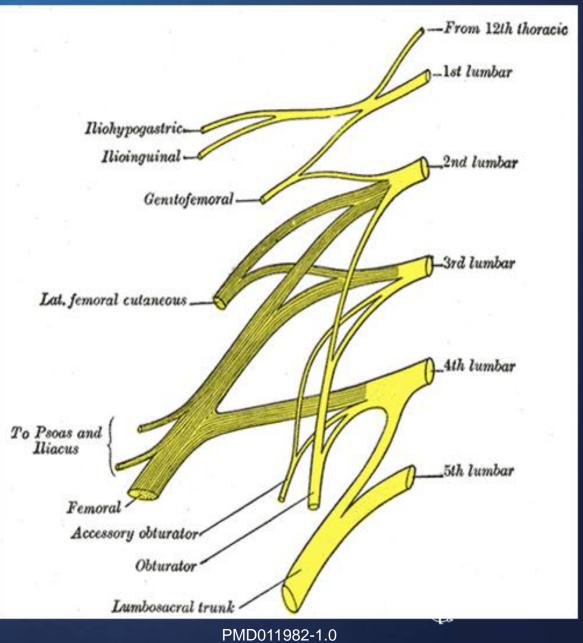


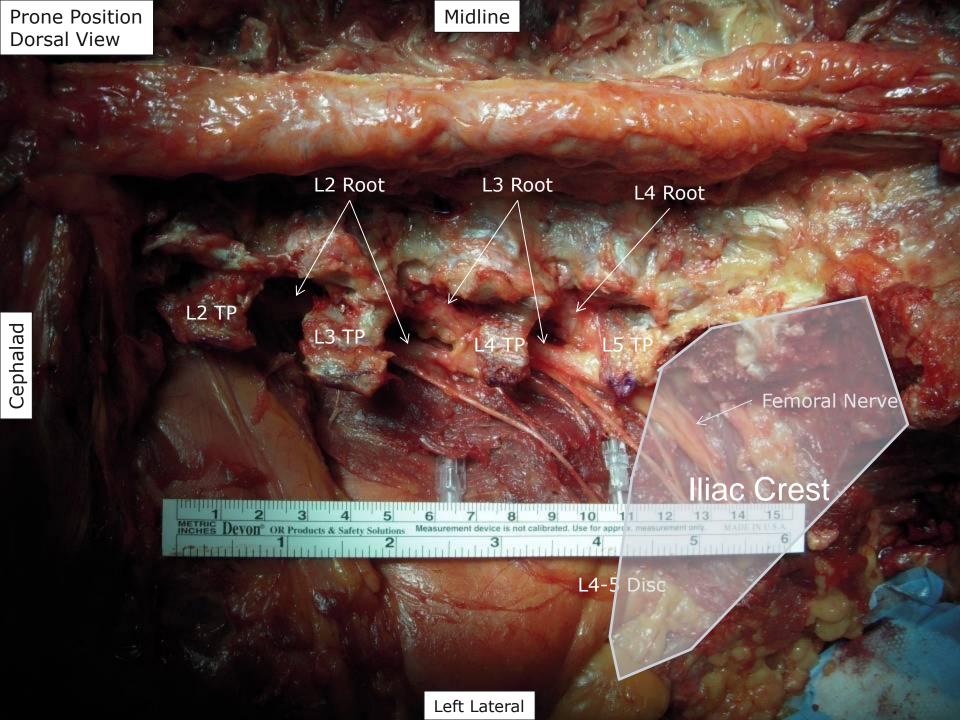
8 | MDT Confidential

### **Neural Symptoms**

- L4-5 suspected to be have a higher incidence than other levels
- No current means of predicting the femoral nerve course across the L4-5 disc space
- Imaging techniques have limited capabilities
- What are potential causes?
  - Direct nerve injury
  - Indirect nerve injury
  - Muscle trauma
  - Hematoma reported to cause femoral nerve palsy
  - Combination

9 | MDT Confidential





# Anatomic Review

Good for teaching

•Poor for surgical application

•No illustration from the direct lateral perspective





### Anatomy

•15% of femoral nerves contacting needle to variable degree

•Diameter ranged from 8-17 mm

Average Diameter13.1 mm – 14mm

•Obturator was noted to be just anterior to the femoral nerve

•L5 Transverse Process dorsal border

Needle in L4-5 Disc

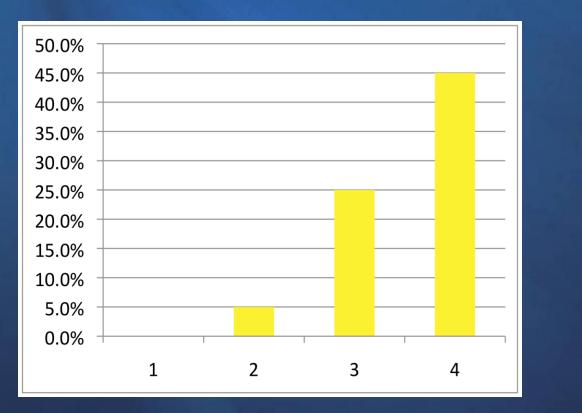
Needle in

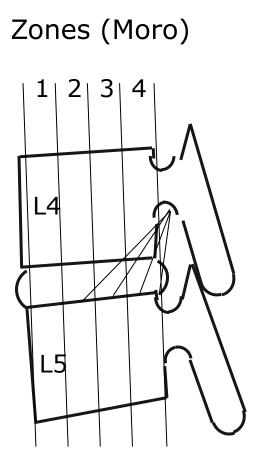
L3-4 Disc

Ventral

Femoral Nerve

Cephalad


Dorsal


\_3 TP

₹4.TP

### Cadaveric: Femoral Nerve Distribution

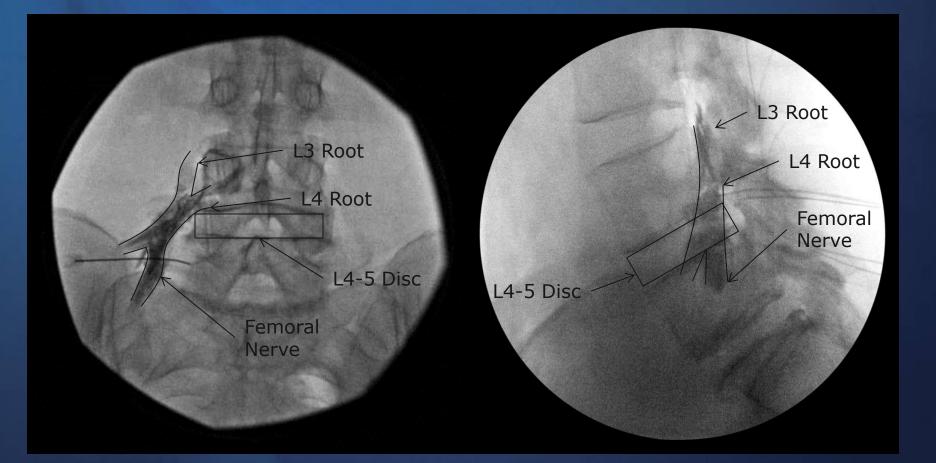
### Distribution by Zone





13 | MDT Confidential

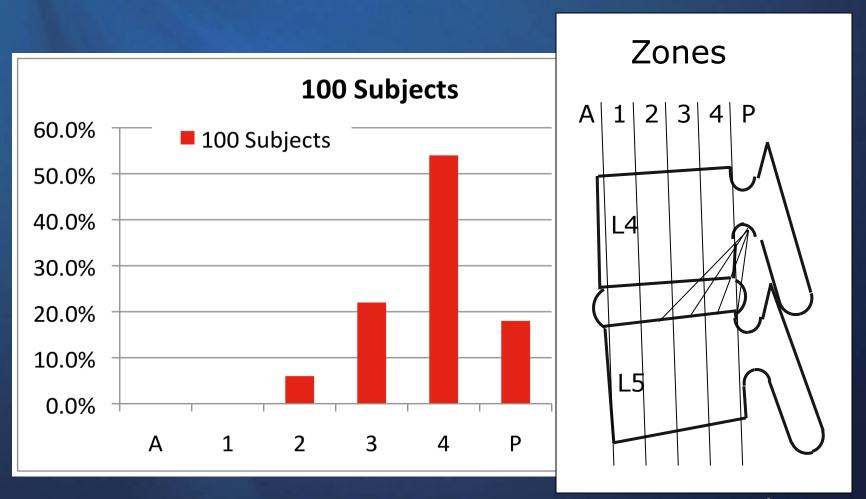



### Davis et al. – Neurogram (1)

- L4-5 Transforminal ESI are often attempted prior to surgical intervention
- Contrast
  - To avoid vascular or thecal injection
  - Outlines L4 root to verify proper placement
- Lateral flouroscopic image occasionally reveals contrast tracking caudal across the disc space



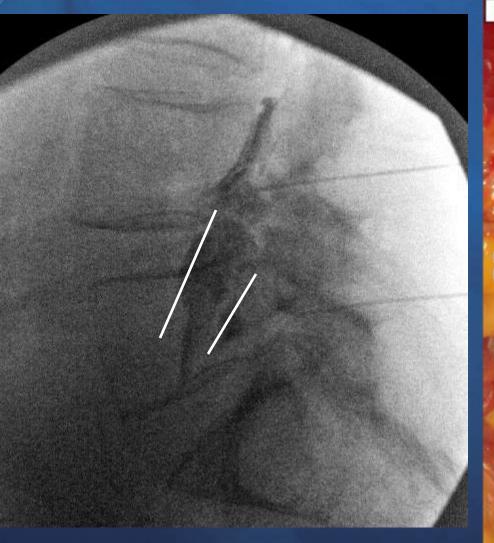
14 | MDT Confidential

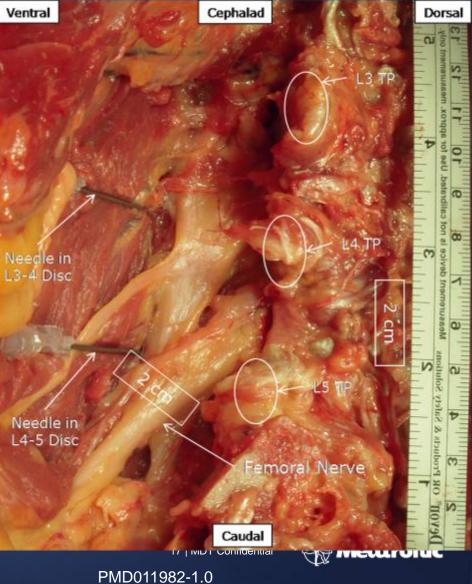

# Zone 3 Neurogram(1)



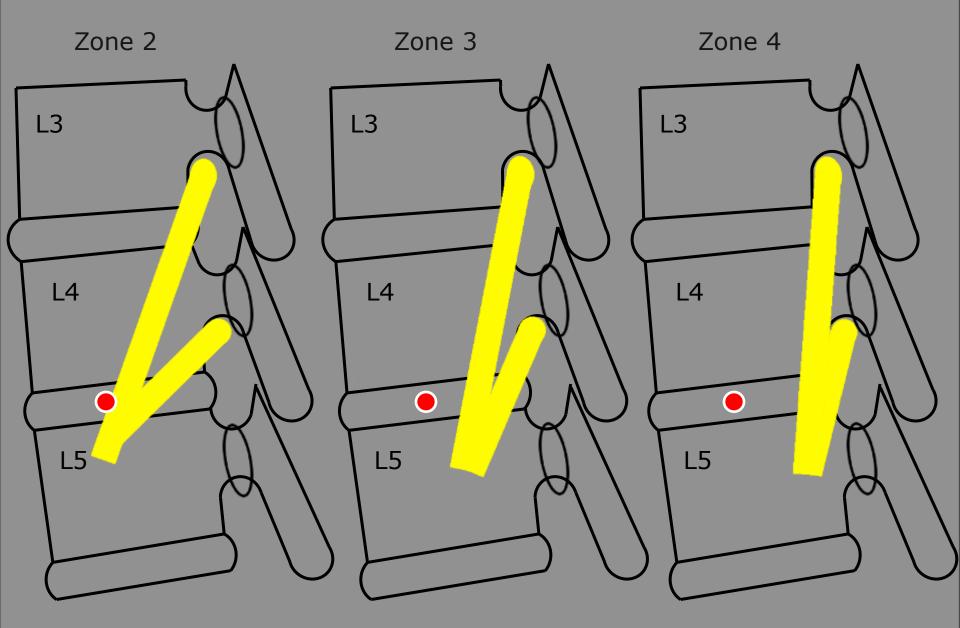
15 | MDT Confidential




### Neurogram: Femoral Nerve Distribution (1)

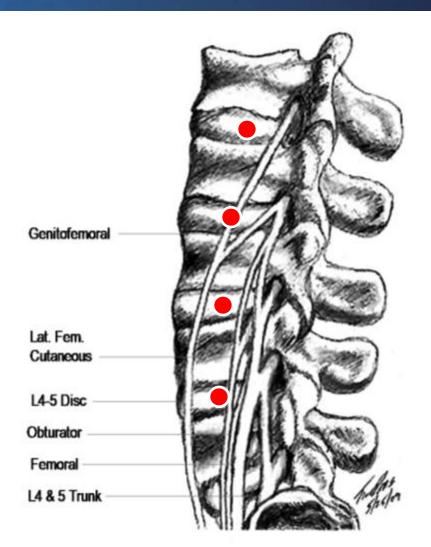


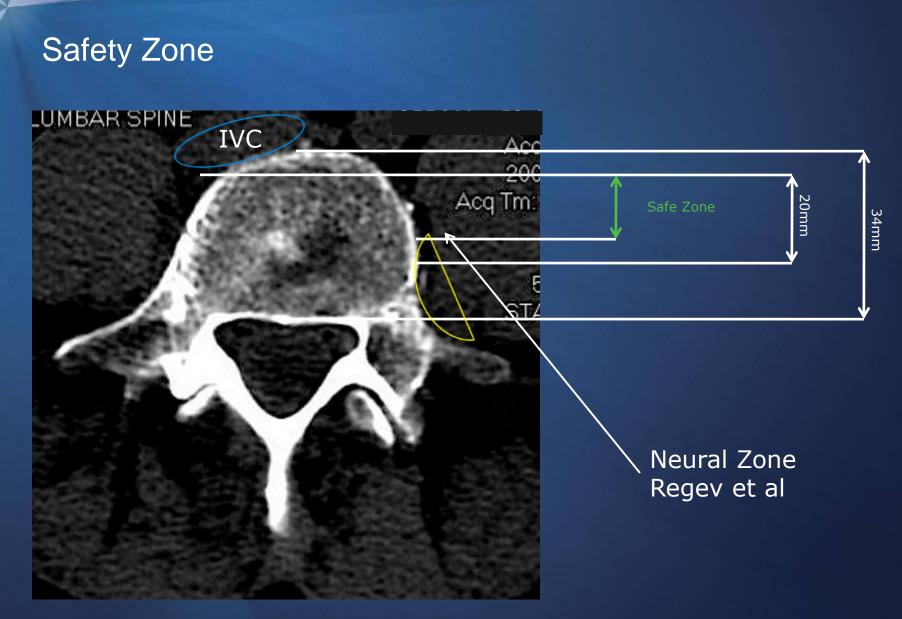

16 | MDT Confidential




# Neurogram and Gross Anatomy (1)







### Femoral Nerve Angle Diagram



### **Neural Structure By Level**


- L1-2
  - No Motor
- L2-3
  - Genitofemoral
  - Ilioinguinal
  - Iliohypogastric
  - L2 Root Dorsal
- L3-4
  - Genitofemoral Ant Psoas
  - L2-3 Trunk
  - LFC
- L4-5
  - Obturator, Femoral, LFC







### Zone 3 Neurogram: 3 Blade Retractor (1)



### Dissection with Lateral Retractor in Place

Left Lateral Decubitus Position Dorsal View Right Lateral

Lat Fem Cutaneous

Femoral Nerve

L5 TP

Posterior Retractor Blade Retractor

Midline

Iliac Crest Cut

PMD011982-1.0



Caudal

### Sequence of Potential Neural Compomise

- Stretch Jack-Knife
- Spear During Disc Localization
- Severe During incision into annulus
- Stretch Displacement with Dilator
- Squeeze Retractor Expansion against L5 TP
- Strangle Vascular Compromise
  - When pressure upon a soft tissue structure exceeds that of MAP causes decrease vascular perfusion



23 | MDT Confidential

# Lateral Jack-Knife Vs. Lateral Decubitus Positioning Study

- 20 total subjects randomized to two groups
  - Right lateral Jack-knife position (RLJK)
    - 5 males
    - 5 females
    - Age range from 26 33
    - Average age 28.7
  - Right lateral decubitus position (RLD)
    - 6 males
    - 4 females
    - Age range from 25 34
    - Average age 28.7
- Bilateral hip flexion and knee extension strength was tested with the 10-repetition maximum test at baseline, immediately after one hour of positioning and after a one hour recovery period.
- Sensory testing was performed immediately after one hour of positioning and every 15 minutes up to an hour recovery period

As presented at the Napa Pain Conference, August 2013.

24 | MDT Confidential



# Lateral Jack-Knife Vs. Lateral Decubitus Positioning Study: Results

#### 10-repetition maximum test results immediately after positioning

- 100% of subjects in the RLJK position were found to have knee extension and hip flexion weakness.
- All subjects in the RLJK position were found to have 10% – 70% (Average of 30%) decrease in left knee extension strength.
- 2 subjects in the RLJK position were found to have 10% decrease in right knee extension strength.
- All subjects in the RLJK position were found to have 20% – 80% (Average of 43%) decrease in left hip flexion strength.
- 2 subjects in the RLJK position were found to have 10% decrease in right hip flexion strength.
- No subjects (0%) in the RLD position were found to have knee extension and hip flexion weakness.

|           |     |        |          | Post-positioning 10-repetition maximum 0' |          |          |          |
|-----------|-----|--------|----------|-------------------------------------------|----------|----------|----------|
| Subject # | Age | Gender | Position | Post RKE                                  | Post-LKE | Post-RHF | Post-LHF |
| 1         | 29  | F      | LD       | 10/10                                     | 10/10    | 10/10    | 10/10    |
| 2         | 33  | М      | JK       | 10/10                                     | 8/10     | 10/10    | 8/10     |
| 3         | 27  | М      | JK       | 10/10                                     | 3/10     | 10/10    | 5/10     |
| 4         | 27  | F      | JK       | 10/10                                     | 7/10     | 10/10    | 5/10     |
| 5         | 28  | F      | LD       | 10/10                                     | 10/10    | 10/10    | 10/10    |
| 6         | 28  | М      | JK       | 10/10                                     | 6/10     | 10/10    | 6/10     |
| 7         | 26  | М      | JK       | 10/10                                     | 9/10     | 9/10     | 2/10     |
| 8         | 31  | М      | LD       | 10/10                                     | 10/10    | 10/10    | 10/10    |
| 9         | 30  | F      | LD       | 10/10                                     | 10/10    | 10/10    | 10/10    |
| 10        | 25  | М      | LD       | 10/10                                     | 10/10    | 10/10    | 10/10    |
| 11        | 29  | F      | JK       | 9/10                                      | 5/10     | 9/10     | 7/10     |
| 12        | 27  | М      | LD       | 10/10                                     | 10/10    | 10/10    | 10/10    |
| 13        | 30  | F      | JK       | 9/10                                      | 8/10     | 10/10    | 5/10     |
| 14        | 27  | М      | JK       | 10/10                                     | 9/10     | 10/10    | 7/10     |
| 15        | 30  | М      | LD       | 10/10                                     | 10/10    | 10/10    | 10/10    |
| 16        | 26  | М      | LD       | 10/10                                     | 10/10    | 10/10    | 10/10    |
| 17        | 27  | М      | LD       | 10/10                                     | 10/10    | 10/10    | 10/10    |
| 18        | 28  | F      | JK       | 10/10                                     | 9/10     | 10/10    | 7/10     |
| 19        | 32  | F      | JK       | 10/10                                     | 6/10     | 10/10    | 5/10     |
| 20        | 34  | F      | LD       | 10/10                                     | 10/10    | 10/10    | 10/10    |

As presented at the Napa Pain Conference, August 2013.

25 | MDT Confidential



# Lateral Jack-Knife Vs. Lateral Decubitus Positioning Study: Results

#### Pinprick

- L1 and L2 were the most affected dermatomes.
- 100% of subjects had abnormal pinprick sensation in the L1 dermatome.
  - Up to 70% still had deficits after one hour of recovery time.
- 90% of subjects had abnormal pinprick sensation in the L2 dermatome.
  - Up to 70% still had deficits after one hour of recovery time.
- Light touch
  - Similar results to pinprick testing found

| PINPRICK LEFT LOWER EXTREMITY RLIK GROUP |      |        |        |        |  |  |  |
|------------------------------------------|------|--------|--------|--------|--|--|--|
| DERMATOMES                               | TIME | ASIA 0 | ASIA 1 | ASIA 2 |  |  |  |
|                                          | 0′   | 30%    | 70%    | 0      |  |  |  |
|                                          | 15′  | 30%    | 70%    | 0      |  |  |  |
| L1                                       | 30′  | 10%    | 80%    | 10%    |  |  |  |
|                                          | 45'  | 0      | 80%    | 20%    |  |  |  |
|                                          | 60′  | 0      | 70%    | 30%    |  |  |  |
|                                          | 0′   | 30%    | 60%    | 10%    |  |  |  |
|                                          | 15′  | 20%    | 60%    | 20%    |  |  |  |
| L2                                       | 30'  | 10%    | 70%    | 20%    |  |  |  |
|                                          | 45'  | 10%    | 50%    | 40%    |  |  |  |
|                                          | 60′  | 0      | 50%    | 50%    |  |  |  |
|                                          | 0′   | 0      | 20%    | 80%    |  |  |  |
|                                          | 15′  | 0      | 20%    | 80%    |  |  |  |
| L3                                       | 30'  | 0      | 20%    | 80%    |  |  |  |
|                                          | 45'  | 0      | 20%    | 80%    |  |  |  |
|                                          | 60′  | 0      | 20%    | 80%    |  |  |  |
|                                          | 0'   | 0      | 0      | 100%   |  |  |  |
|                                          | 15′  | 0      | 0      | 100%   |  |  |  |
| L4                                       | 30′  | 0      | 0      | 100%   |  |  |  |
|                                          | 45′  | 0      | 0      | 100%   |  |  |  |
|                                          | 60'  | 0      | 0      | 100%   |  |  |  |

| LIGHT TOUCH LEFT LOWER EXTREMITY RLIK GROUP |      |        |        |        |  |  |  |
|---------------------------------------------|------|--------|--------|--------|--|--|--|
| DERMATOMES                                  | TIME | ASIA 0 | ASIA 1 | ASIA 2 |  |  |  |
|                                             | 0′   | 10%    | 70%    | 20%    |  |  |  |
|                                             | 15'  | 0      | 80%    | 20%    |  |  |  |
| L1                                          | 30′  | 0      | 70%    | 30%    |  |  |  |
|                                             | 45'  | 0      | 50%    | 50%    |  |  |  |
|                                             | 60'  | 0      | 20%    | 80%    |  |  |  |
|                                             | 0'   | 30%    | 40%    | 30%    |  |  |  |
|                                             | 15'  | 10%    | 60%    | 40%    |  |  |  |
| L2                                          | 30'  | 10%    | 50%    | 40%    |  |  |  |
|                                             | 45'  | 10%    | 40%    | 50%    |  |  |  |
|                                             | 60'  | 0      | 20%    | 80%    |  |  |  |
|                                             | 0'   | 0      | 50%    | 50%    |  |  |  |
|                                             | 15'  | 0      | 40%    | 60%    |  |  |  |
| L3                                          | 30'  | 0      | 40%    | 60%    |  |  |  |
|                                             | 45'  | 0      | 20%    | 80%    |  |  |  |
|                                             | 60'  | 0      | 20%    | 80%    |  |  |  |
|                                             | 0′   | 0      | 20%    | 80%    |  |  |  |
|                                             | 15'  | 0      | 10%    | 90%    |  |  |  |
| L4                                          | 30′  | 0      | 0      | 100%   |  |  |  |
|                                             | 45'  | 0      | 0      | 100%   |  |  |  |
|                                             | 60′  | 0      | 0      | 100%   |  |  |  |

As presented at the Napa Pain Conference, August 2013.

26 | MDT Confidential



# Conclusion

- Jack-Knife likely starts the traction model
  - Time dependent
  - Saturday night palsy
- Disc Localization
  - L4-5 Highest Density of Neural Structures
- "Safety zone" is only relevant for entry point to disc space
- Retractor Placement
  - L4-5 will cause displacement posterior
  - L5 TP Can be a site of compression
- Neural injury most commonly will be indirect
  - Stretch and compression
  - Likely causing some degree of anoxia

As presented at the Napa Pain Conference, August 2013.

27 | MDT Confidential



### References

- (1)Davis et al. Femoral Neurogram assessing the Anatomic Course pior to Transpsoas Spinal Access to the L4-5 Disc. Presented at AANS Annuyal Meeting, May 1, 2011[abstract].
- (2)An Anatomic Study of Lumbar Plexux with respect to Retroperitoneal Endoscopic Surgery; Spine (Phila Pa). 2003 March 1; 25(5): 423-8; discussion 427-8; Moro T, Kikuchi S, Komo S, Yaginuma H.
- (3) Clinical Risk Factors for Deep Vein Thrombosis after Total Hip and Knee Arthroplasty; Zhonghua Wai Ke Za Ahi. 2005 Oct 15; 43(20): 1317-20; Guan ZP, Lu HS, Chen YZ, Song YN, Qin XL, Jiang J.
- (4)Dural Closure using the U-clip in Minmally Invasive Spinal Tumor Resection; J Spinal Disord Tech. 2010 Oct, 23 (7): 486-9; Park P, Leveque JC, LaMarca F, Sullivan SE.
- (5)Interfascial Technique for Vertebral Artery exposure in the Suboccipital Triangle: The Road Map; Neurosurgery. 2010 Dec; 67(2 Suppl Operative): 355-61; Youssef AS, Uribe JS, Ramos E, Janjua R, Thomas LB, Van Loveren H.
- References > 10 years represent historical disease state information on Kyphosis of the lubmar spine; MDT comment September, 2013

28 | MDT Confidential

